14 research outputs found

    Performance Analysis of Open Source Machine Learning Frameworks for Various Parameters in Single-Threaded and Multi-Threaded Modes

    Full text link
    The basic features of some of the most versatile and popular open source frameworks for machine learning (TensorFlow, Deep Learning4j, and H2O) are considered and compared. Their comparative analysis was performed and conclusions were made as to the advantages and disadvantages of these platforms. The performance tests for the de facto standard MNIST data set were carried out on H2O framework for deep learning algorithms designed for CPU and GPU platforms for single-threaded and multithreaded modes of operation Also, we present the results of testing neural networks architectures on H2O platform for various activation functions, stopping metrics, and other parameters of machine learning algorithm. It was demonstrated for the use case of MNIST database of handwritten digits in single-threaded mode that blind selection of these parameters can hugely increase (by 2-3 orders) the runtime without the significant increase of precision. This result can have crucial influence for optimization of available and new machine learning methods, especially for image recognition problems.Comment: 15 pages, 11 figures, 4 tables; this paper summarizes the activities which were started recently and described shortly in the previous conference presentations arXiv:1706.02248 and arXiv:1707.04940; it is accepted for Springer book series "Advances in Intelligent Systems and Computing

    Performance Evaluation of Distributed Computing Environments with Hadoop and Spark Frameworks

    Full text link
    Recently, due to rapid development of information and communication technologies, the data are created and consumed in the avalanche way. Distributed computing create preconditions for analyzing and processing such Big Data by distributing the computations among a number of compute nodes. In this work, performance of distributed computing environments on the basis of Hadoop and Spark frameworks is estimated for real and virtual versions of clusters. As a test task, we chose the classic use case of word counting in texts of various sizes. It was found that the running times grow very fast with the dataset size and faster than a power function even. As to the real and virtual versions of cluster implementations, this tendency is the similar for both Hadoop and Spark frameworks. Moreover, speedup values decrease significantly with the growth of dataset size, especially for virtual version of cluster configuration. The problem of growing data generated by IoT and multimodal (visual, sound, tactile, neuro and brain-computing, muscle and eye tracking, etc.) interaction channels is presented. In the context of this problem, the current observations as to the running times and speedup on Hadoop and Spark frameworks in real and virtual cluster configurations can be very useful for the proper scaling-up and efficient job management, especially for machine learning and Deep Learning applications, where Big Data are widely present.Comment: 5 pages, 1 table, 2017 IEEE International Young Scientists Forum on Applied Physics and Engineering (YSF-2017) (Lviv, Ukraine

    IMP Science Gateway: from the Portal to the Hub of Virtual Experimental Labs in Materials Science

    Full text link
    "Science gateway" (SG) ideology means a user-friendly intuitive interface between scientists (or scientific communities) and different software components + various distributed computing infrastructures (DCIs) (like grids, clouds, clusters), where researchers can focus on their scientific goals and less on peculiarities of software/DCI. "IMP Science Gateway Portal" (http://scigate.imp.kiev.ua) for complex workflow management and integration of distributed computing resources (like clusters, service grids, desktop grids, clouds) is presented. It is created on the basis of WS-PGRADE and gUSE technologies, where WS-PGRADE is designed for science workflow operation and gUSE - for smooth integration of available resources for parallel and distributed computing in various heterogeneous distributed computing infrastructures (DCI). The typical scientific workflows with possible scenarios of its preparation and usage are presented. Several typical use cases for these science applications (scientific workflows) are considered for molecular dynamics (MD) simulations of complex behavior of various nanostructures (nanoindentation of graphene layers, defect system relaxation in metal nanocrystals, thermal stability of boron nitride nanotubes, etc.). The user experience is analyzed in the context of its practical applications for MD simulations in materials science, physics and nanotechnologies with available heterogeneous DCIs. In conclusion, the "science gateway" approach - workflow manager (like WS-PGRADE) + DCI resources manager (like gUSE)- gives opportunity to use the SG portal (like "IMP Science Gateway Portal") in a very promising way, namely, as a hub of various virtual experimental labs (different software components + various requirements to resources) in the context of its practical MD applications in materials science, physics, chemistry, biology, and nanotechnologies.Comment: 6 pages, 5 figures, 3 tables; 6th International Workshop on Science Gateways, IWSG-2014 (Dublin, Ireland, 3-5 June, 2014). arXiv admin note: substantial text overlap with arXiv:1404.545

    Comparative Analysis of Open Source Frameworks for Machine Learning with Use Case in Single-Threaded and Multi-Threaded Modes

    Full text link
    The basic features of some of the most versatile and popular open source frameworks for machine learning (TensorFlow, Deep Learning4j, and H2O) are considered and compared. Their comparative analysis was performed and conclusions were made as to the advantages and disadvantages of these platforms. The performance tests for the de facto standard MNIST data set were carried out on H2O framework for deep learning algorithms designed for CPU and GPU platforms for single-threaded and multithreaded modes of operation.Comment: 4 pages, 6 figures, 4 tables; XIIth International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT 2017), Lviv, Ukrain

    Batch Size Influence on Performance of Graphic and Tensor Processing Units during Training and Inference Phases

    Full text link
    The impact of the maximally possible batch size (for the better runtime) on performance of graphic processing units (GPU) and tensor processing units (TPU) during training and inference phases is investigated. The numerous runs of the selected deep neural network (DNN) were performed on the standard MNIST and Fashion-MNIST datasets. The significant speedup was obtained even for extremely low-scale usage of Google TPUv2 units (8 cores only) in comparison to the quite powerful GPU NVIDIA Tesla K80 card with the speedup up to 10x for training stage (without taking into account the overheads) and speedup up to 2x for prediction stage (with and without taking into account overheads). The precise speedup values depend on the utilization level of TPUv2 units and increase with the increase of the data volume under processing, but for the datasets used in this work (MNIST and Fashion-MNIST with images of sizes 28x28) the speedup was observed for batch sizes >512 images for training phase and >40 000 images for prediction phase. It should be noted that these results were obtained without detriment to the prediction accuracy and loss that were equal for both GPU and TPU runs up to the 3rd significant digit for MNIST dataset, and up to the 2nd significant digit for Fashion-MNIST dataset.Comment: 10 pages, 7 figures, 2 table
    corecore